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This article reexamines the notion of closed-loop carrier phase synchronization
motivated by the theory of maximum a posteriori phase estimation with emphasis on
the development of new structures based on both maximum-likelihood and average-
likelihood functions. The criterion of performance used for comparison of all the
closed-loop structures discussed is the mean-squared phase error for a fixed-loop
bandwidth.

I. Introduction

It is well known [1] that estimation of an unknown parameter based on a likelihood function approach
is optimum in the sense of maximizing the a posteriori probability of the parameter given the observation.
For the case where the unknown parameter is the random phase of a carrier received in a background
of additive white Gaussian noise (AWGN), optimum open-loop structures have been derived for imple-
menting the resulting phase estimate [2,3]. Herein, these structures are referred to as “open-loop carrier
phase estimators.”

When the carrier is data modulated, the conditional probability density function (pdf) of the
observation—given the carrier phase—depends on the data sequence that exists during the interval of
observation for the received signal. Hence, before maximizing this function with respect to the carrier
phase, one has to choose how to eliminate its dependence on the unknown data sequence. If one is inter-
ested in determining only the optimum carrier phase estimate, the appropriate choice is to average the
conditional pdf over the unknown data sequence. We shall refer to the phase estimate obtained by this
process as the “average-likelihood” (AL) estimate. If, however, one is interested in joint phase estimation
and data detection, the appropriate choice is to first maximize the conditional pdf with respect to the
data sequence (resulting in the most probable sequence), and then to maximize it with respect to the
carrier phase.1 We shall refer to the phase estimate obtained by this process as the “maximum-likelihood”

1 In principle, the order of maximization operations could be reversed.
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(ML) estimate.2 It has often been conjectured, although never proven, that from the standpoint of phase
estimation alone, the ML phase estimate is suboptimum to the AL estimate. Because of this, what is
typically done in practice is to derive the AL carrier phase estimate and then use this estimate as the
phase of a demodulation reference signal for performing bit-by-bit data detection. However, it should
be understood that, from the standpoint of joint estimation of data and carrier phase, this sequential
operation of first deriving the carrier phase estimate in the absence of any knowledge of the data (the
AL approach) and then detecting the ensuing data using the phase estimate so derived is, in general,
suboptimum.

Aside from the optimality of the AL and ML approaches to open-loop estimation of carrier phase,
likelihood functions have also been used as motivation for closed-loop carrier phase synchronization.
Emphasis is placed on the word “motivation” since, indeed, there is no guarantee that the resulting
closed-loop schemes are optimal; nor can one guarantee that those schemes motivated by the AL approach
will outperform those motivated by the ML approach (although typically this turns out to be the case,
as we shall show.) Nonetheless, as we shall see, closed-loop carrier phase estimation schemes motivated
by likelihood functions do indeed yield good tracking performance (as measured by the mean-squared
value of the loop phase error). In fact, under suitable assumptions, many of them are synonymous with
well-known carrier tracking loops, e.g., the I-Q Costas loop and the I-Q decision feedback or polarity-type
Costas loop [4,5] that have been around for many decades.

It is the intent of this article to explore in more detail the structure and performance of closed-loop
carrier phase synchronization loops motivated by likelihood functions, i.e., those in which the derivative
(or some monotonic function of the derivative) of the conditional pdf of the observation given the carrier
phase is used as an error signal in a closed-loop phase estimation scheme. Herein, for the purpose of
abbreviated notation, we shall refer to such loops as AL and ML closed loops depending on the particular
likelihood function used to define the error signal.

It is important at this point to mention that the notion of closed loops based on likelihood functions
according to the above definition is indeed not new, and one should not attribute its originality to the
authors of this article. Rather, the purpose of this article is to expand upon this notion and present
some new loops motivated by likelihood functions along with their tracking performances. As such,
we are not reinventing the wheel but, rather, adding some more spokes to it. Our specific motivation
for reexamining this problem comes from a deep-space communication application involving the Galileo
S-band (2.3 GHz) mission, which employs low-rate (r = 1/4) concatenated Reed–Solomon/convolutionally
encoded binary phase-shift keying (BPSK) [6]. Because of a malfunctioning high-gain X-band (8.4 GHz)
antenna, the mission must rely on a low-gain S-band antenna (and, thus, much reduced link margin) for
data transmission back to Earth. At Jupiter encounter, the symbol energy-to-noise spectral density ratio,
Es/N0, could be as low as −11 dB. One technique for improving this situation is to use antenna array
combining [7] wherein the signals from multiple antennas, either collocated or at distant geographical
locations, are combined to build Es/N0. Even then the equivalent Es/N0 could still be as low as −5 dB.
Thus, in our application, there is a serious need to find as efficient a carrier tracking loop as possible
in the sense of producing minimum phase jitter at very low Es/N0. In the more general context, it is
important to point out that, in coded systems, the carrier-loop performance is dependent on the symbol
energy-to-noise ratio Es/N0 rather than the bit energy-to-noise ratio Eb/N0 and, thus, becomes critical
when Es/N0 becomes small, despite the fact that Eb/N0 might be large. In uncoded systems where
Es/N0 = Eb/N0 and is large, the search for a more efficient carrier tracking loop is somewhat academic
since the known configurations perform quite well and are virtually identical to one another.

2 In the strictest of parlance, both the AL and the ML phase estimates are maximum-likelihood estimates since the term
“maximum-likelihood estimation” is typically reserved for estimating a purely unknown (uniformly distributed) random
parameter. However, to allow for distinguishing between the two different ways in which the data sequence is handled,
we shall use the above terminology.
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The hierarchical structure of the problem and also the way in which it is addressed in this article is
illustrated by the tree diagram of Fig. 1. We have already discussed the first level of the overall dichotomy
in terms of the ML and AL approaches. This level of the chart as well as those below it will take on more
meaning as soon as we develop a mathematical formulation of the problem in Section III.

Fig. 1.   A hierarchical structure of the open-/closed-loop carrier phase estimation problem for data-modulated signals.
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II. System Model

Consider a system that transmits BPSK3 modulation over an AWGN channel. As such, the received
signal takes the form

r(t) =
√

2Sd(t) sin (ωct+ θ) + n(t) = s (t; θ, d(t)) + n(t) (1)

where S denotes the received power, ωc is the carrier frequency in rad/sec, θ is the unknown phase
assumed to be uniformly distributed in the interval (−π, π), n(t) is an AWGN with single-sided power

3 We restrict ourselves to the case of binary modulation. By a straightforward extension of the procedures discussed, the
results can easily be extended to M -ary modulation.
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spectral density N0 W/Hz, and d(t) is a binary-valued (±1) random pulse train defined by the rate 1/T
binary data sequence {di} and the rectangular pulse shape, p(t), as

d(t) =
∞∑

i=−∞
dip(t− iT ), p(t) =

{
1; 0 ≤ t ≤ T
0; otherwise (2)

For an observation interval of L bits [we assume without loss of generality the interval (0,LT )], the
conditional pdf of the received signal (observation) given the unknown phase and the particular data
sequence, di, transmitted in that interval is easily shown to be

p (r(t)|θ, di(t)) = C0 exp

(
2
√

2S
N0

∫ LT

0

r(t)di(t) sin (ωct+ θ)dt

)
4= qi(θ) (3)

where di(t) is the transmitted waveform corresponding to the transmitted sequence in accordance with
Eq. (2) and C0 is a constant of proportionality. To proceed further, we must now choose between AL and
ML approaches.

III. Closed Loops Motivated by the AL Approach

A. Structures

Suppose that we are interested in estimating only the carrier phase, θ. Then, as previously mentioned,
the appropriate approach is to average p (r(t)|θ, di(t)) over all possible (2L) and equally likely data
sequences yielding the conditional pdf p (r(t)|θ) 4= qAL(θ). One AL open-loop phase estimate (herein
referred to as “AL open-loop estimator no. 1”) is obtained by finding the value of θ that maximizes
qAL(θ), namely (see Fig. 1: θ̂AL

4= max−1
θ qAL(θ), unpartitioned observation)

θ̂AL1

4= max
θ

−1
2L∑
i=1

exp

(
2
√

2S
N0

∫ LT

0

r(t)di sin (ωct+ θ)dt

)
(4)

where the inverse maximum notation “max−1f(θ)” denotes the value of θ that maximizes f(θ). Alter-
nately, breaking up the integration over the entire observation into a sum of integrals on each bit interval
and recognizing that the data bits are independent, identically distributed (iid) binary random variables,
then p (r(t)|θ) can be expressed as a product of hyperbolic cosine functions. A second AL open-loop
phase estimate (herein referred to as “AL open-loop estimator no. 2”) is obtained by finding the value of
θ that maximizes this product form of qAL(θ), which corresponds to partitioning the observation into its
individual bit intervals. The result is (see Fig. 1: θ̂AL

4= max−1
θ qAL(θ), partitioned observation)

θ̂AL2

4= max
θ

−1
L−1∏
k=0

cosh

(
2
√

2S
N0

∫ (k+1)T

kT

r(t) sin (ωct+ θ)dt

)
(5)

It is important to emphasize here (and we shall repeat this emphasis later on in the closed-loop dis-
cussion) that partitioning or not partitioning the observation interval has no effect on the value of the
optimum estimator nor on its performance. That is, optimum open-loop θ̂AL1 and θ̂AL2 are mathe-
matically identical. The difference between the two lies solely in their implementation and likewise the
difference in the closed-loop implementations motivated by these estimates, as we shall see shortly.
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Finally, one could obtain an AL open-loop estimator by maximizing any monotonic function of qAL(θ),

for example ln qAL(θ). The reason for choosing the natural logarithm as the monotonic function is to
simplify the mathematics, i.e., to convert the L-fold product in Eq. (5) to an L-fold sum. Thus, the
third AL open-loop phase estimate (herein referred to as “AL open-loop estimator no. 3”) is obtained by
finding the value of θ that maximizes ln qAL(θ) with qAL(θ) in its partitioned form. The result is (see
Fig. 1: θ̂AL

4= max−1
θ ln qAL(θ), partitioned observation)

θ̂AL3

4= max
θ

−1
L−1∑
k=0

ln cosh

(
2
√

2S
No

∫ (k+1)T

kT

r(t) sin (ωct+ θ)dt

)
(6)

Block diagram implementations of AL open-loop estimator no. 1 [Eq. (4)] and AL open-loop estimator
no. 3 [Eq. (6)] are illustrated in Fig. 2, no. 3 being the form most commonly found in discussions of
open-loop maximum a posteriori (MAP) carrier phase estimation. In drawing these implementations, we
have quantized the unknown phase into Q values, and thus the maximization over the continuous phase
parameter θ in Eqs. (4) and (6) is approximated by maximization over a Q-quantized version of this
parameter.

Fig. 2.  Implementation of two AL open-loop phase estimators: (a) AL open-loop estimator no. 1—observation 
unpartitioned (quantized parallel implementation) and (b) AL open-loop estimator no. 3—observation partitioned 
(quantized parallel implementation).
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Conceptually, a fourth optimum AL open-loop estimator, θ̂AL4 , could be obtained by maximizing
ln qAL(θ) with qAL(θ) in its unpartitioned form. However, in view of the above discussion, θ̂AL3 and θ̂AL4

would be mathematically identical and, since θ̂AL4 appears to have no implementation advantage, we do
not pursue it here.
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Closed-loop phase synchronization structures4 based on the four AL open-loop estimators are obtained
by choosing as error signals, e, the functions respectively given by dqAL(θ)/dθ and d ln qAL(θ)/dθ where
qAL(θ) and ln qAL(θ) each takes on its unpartitioned or partitioned form. For simplicity of notation, we
shall refer to these four closed-loop structures as AL closed-loop nos. 1, 2, 3 and 4. The implementations
corresponding to AL closed-loop no. 1 and AL closed-loop no. 3 (the two simplest implementations of
the four) are illustrated in Figs. 3(a) and (b), the latter being what is commonly called an “I-Q MAP
estimation loop” [8,9]. The special cases of Fig. 3(b), wherein the hyperbolic tangent nonlinearity is
approximated by linear and hard limiter devices, corresponding respectively to low and high signal-to-
noise ratio (SNR) conditions, are commonly called the “I-Q Costas loop” [4] and “I-Q polarity-type Costas
loop” [5].

Fig. 3.  Implementation of two AL closed loops: (a) AL closed loop no. 1—observation unpartitioned and (b) AL 
closed loop no. 3—observation partitioned.
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4 For ease of illustration, we show only the portion of the closed loop that generates the loop error signal, which in the
actual implementation becomes the input to the loop filter.
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Before proceeding, it is important to reemphasize that because of the monotonicity of the logarithm
function, the AL open-loop phase estimates θ̂AL3 and θ̂AL4 are mathematically identical to θ̂AL1 and θ̂AL2

and thus yield identical performance. However, the equivalent statement is not necessarily true when
considering the performances of the closed loops motivated by these four different AL formulations. More
specifically, the closed loops motivated by θ̂AL3 and θ̂AL4 do not necessarily yield the same performance
as those motivated by θ̂AL1 and θ̂AL2 . The reason for this stems from the fact that the closed-loop
performance (when properly normalized) is proportional to the derivative of qAL(θ) (or ln qAL(θ) as
appropriate) in the neighborhood of its maximum, which in general is different for qAL(θ) and ln qAL(θ).
However, we hasten to add that since partitioning does not change the functions qAL(θ) or ln qAL(θ)
themselves, the closed loops derived from either the partitioned or unpartitioned forms of the likelihood
(or log likelihood) function should yield identical performance, i.e., AL closed-loop no. 1 and AL closed-
loop no. 2 will have identical performance, as will AL closed-loop no. 3 and AL closed-loop no. 4.

B. Performance

In assessing the performance of one closed-loop scheme versus another, one must be careful to normalize
the loop parameters to allow a fair basis of comparison. In this article, the comparison will be made on
the basis of mean-squared phase error, σ2

φ, for a fixed-loop bandwidth, BL.5 This is the typical measure
of performance used to describe a closed-loop phase synchronization structure when it is operating in its
tracking mode.

An analysis of the closed-loop performance of AL closed-loop no. 1 [Fig. 3(a)] results in an expression
for the mean-squared phase error given by6

σ2
φ =

1
ρ

L∑2L

i=1

∑2L

j=1Dij exp {2Rd(L+Di +Dj +Dij)}[∑L
m=0

(
L
m

)
(L− 2m) exp {Rd(3L− 4m)}

]2

 4=
1
ρSL

(7)

where

ρ =
S

N0BL
, Rd =

ST

N0
(8)

and

Di =
L−1∑
k=0

dkdik,
L−1∑
k=0

dikdjk (9)

with

d 4= (d0, d1, · · · , dL−1) = transmitted data sequence

di
4= (di0, di1, · · · , di,L−1) = ith data sequence; i = 1, 2, · · · , 2L (10)

5 It is important at this point to emphasize that BL, being proportional to the total loop gain, includes the slope of the loop
S-curve at the origin as one of its factors. Since, in general, this slope is different for the various loops being investigated,
it is absolutely essential to include this normalization (as we have done) in the definition of BL when comparing the
performance of these loops.

6 All of the performance results given in this article will be based upon the so-called “linear theory” [3], which assumes that
the loop operates in a region of high loop SNR.
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In Eq. (9), Di represents the correlation of the ith data sequence with the transmitted sequence, and Dij

represents the correlation between the ith and the jth data sequences. Some properties of Di and Dij

that are particularly useful in obtaining many of the results that follow are summarized as

2L∑
i=1

2L∑
j=1

Dij = 0

2L∑
i=1

2L∑
j=1

DiDij =
2L∑
i=1

2L∑
j=1

DjDij = 0

2L∑
i=1

2L∑
j=1

D2
ij = 2L

L∑
m=0

(
L

m

)
(L− 2m)2 = 22LL

2L∑
i=1

2L∑
j=1

DiDjDij = 22LL (11)

The factor SL represents the loss of the effective loop SNR, ρ′ 4= σ−2
φ , relative to the loop SNR, ρ, of a

phase-locked loop (PLL). For certain configurations, as we shall see, this loss is synonymous with what
is commonly referred to as “squaring loss” [4,10].

At first glance, it might appear that, for given values of ρ,Rd, and the observation length, L, the mean-
squared phase error would be a function of the particular sequence chosen as the transmitted sequence.
It is easy to show that indeed this is not the case, i.e., σ2

φ is independent of the sequence selected for d.7

To see this, consider a sequence dl
4= (dl0, dl1, · · · , dl,L−1) 6= d and rewrite Di and Dij as

Di =
L−1∑
k=0

dk dlkdlk︸ ︷︷ ︸
= 1

dik =
L−1∑
k=0

d′kd
′
ik

Dij =
L−1∑
k=0

dik dlkdlk︸ ︷︷ ︸
= 1

djk =
L−1∑
k=0

d′ikd
′
jk (12)

where d′k = dkdlk represents the kth element of some other possible transmitted sequence d′ 4=
(d′0, d

′
1, · · · , d′L−1) and d′ik = dlkdik, d

′
jk = dlkdjk are the kth elements of two other possible sequences

d′i
4= (d′i0, d

′
i1, · · · , d′i,L−1) and d′j

4= (d′j0, d
′
j1, · · · , d′j,L−1), respectively. Since, in general, d′ 6= d and since

the summations on i and j in Eq. (7) range over all possible (2L) sequences, then substitution of Eq. (9)
into Eq. (7) shows that σ2

φ evaluated for a transmitted sequence equal to d′ is identical to that evaluated
for a transmitted sequence equal to d.

Special cases of Eq. (7) corresponding to L = 1, 2, and 3 are given below:

7 For convenience in the evaluation of Eq. (7), we may choose the all-1’s sequence for d, in which case Di simplifies to∑L−1

k=0
dik, which takes on values of L− 2m,m = 0, 1, 2, · · · , L.
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σ2
φ =

1
ρ

[
e8Rd − 1

(e3Rd − e−Rd)2

]
; L = 1

σ2
φ =

1
ρ

[
e16Rd + 2e8Rd − 3

(e6Rd − e−2Rd)2

]
; L = 2

σ2
φ =

1
ρ

[
e24Rd + 5e16Rd + 3e8Rd − 9

(e9Rd + e5Rd − eRd − e−3Rd)2

]
; L = 3 (13)

Figure 4 is a plot of SL (in dB) versus Rd (in dB) corresponding to the three cases in Eq. (13). We
observe that the performance of AL closed-loop no. 1 as implemented in Fig. 3(a) is clearly a function of
the observation length of the corresponding open-loop estimator that motivated the structure.

Fig. 4.  Squaring-loss performance of AL closed-loop no. 1 with observation length L as a parameter.  I&D 
weighting coefficients as determined by MAP estimation theory.

AAAAA
AAAAA
AAAAA
AAAAAAAAAAA

AAAA
AAAA

AAAAAA
AAAAAA
AAAAAA

AAAAA
AAAAA

AAAAAA
AAAAAA

AAAA
AAAA

AAAAAAA
AAAAAAA
AAAAAAA

AAAA
AAAA
AAAA
AAAA
AAAAAAAA

AAAAAAAAA
AAAAA
AAAAA

AAAAAA
AAAAAA
AAAAAA

AAA
AAA
AAA

–20 –18 –16 –14 –12 –10 –8 –6 –4 –2 0
–30

–25

–20

–15

–10

–5

0

Rd, dB

AL no. 1 (L = 3)

AL no. 1 (L = 2)

AL no. 1 (L = 1)

AL no. 3

S
Q

U
A

R
IN

G
 L

O
S

S
, d

B

For large Rd, it is straightforward to show that σ2
φ has the asymptotic behavior

σ2
φ
∼=

1
ρ
e2LRd → SL ∼= e−2LRd (14)

For small Rd, σ2
φ has the asymptotic form

σ2
φ
∼=

1
ρ

(
1

2Rd

)
→ SL ∼= 2Rd (15)

which is independent of L.
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Looking at Eq. (14) and Fig. 4, one gets the impression (and rightfully so) that the mean-squared

phase error of AL closed-loop no. 1 becomes unbounded as Rd → ∞. This singular behavior can be
traced to the fact that the 2

√
2S/N0 weighting coefficient of the two integrate-and-dump (I&D) circuits

in the closed loop of Fig. 3(a) becomes unbounded as Rd →∞(N0 → 0). Suppose instead that we were to
replace this coefficient by an arbitrary constant, say K0. From the standpoint of open-loop estimation of
θ, AL open-loop estimator no. 1 of Eq. (4) with 2

√
2S/N0 now replaced by K0 would remain unchanged.

That is, the choice of the weighting constant preceding the L−bit integration has no effect on the open-loop
estimate. On the other hand, the choice of this weighting coefficient for the closed-loop scheme has a
very definite bearing on its performance. In particular, with 2

√
2S/N0 replaced by K0 in Fig. 3(a), the

mean-squared phase error, previously given by Eq. (7), now becomes

σ2
φ =

1
ρ

L
∑2L

i=1

∑2L

j=1Dij exp
{
K(Di +Dj) +K2

(
L

2Rd

) (
1 + Dij

L

)}
[∑L

m=0

(
L
m

)
(L− 2m) exp

{
K(L− 2m) +K2

(
L

4Rd

)}]2

 4=
1
ρSL

(16)

where we have further normalized the weighting coefficient as K 4=
(√

S/2
)
K0T . Note that if we set

K0 = 2
√

2S/N0 as before, then K = 2Rd and Eq. (16) reduces to Eq. (7).

From Eq. (16), we see that as long as K0 (or equivalently K) is finite (which would be the case in
a practical implementation of the AL closed-loop scheme), the large SNR asymptotic behavior of AL
closed-loop no. 1 now becomes

lim
Rd→∞

σ2
φ = lim

N0→0

N0BL
S

 L
∑2L

i=1

∑2L

j=1Dij exp {K(Di +Dj)}[∑L
m=0

(
L
m

)
(L− 2m) exp{K(L− 2m)}

]2

 = 0 (17)

which is what one would expect. What is interesting is that, for any value of Rd, the value of K that
minimizes Eq. (16), which, from the standpoint of closed-loop performance as measured by mean-squared
phase error, would be considered optimum, is K → 0, independent of Rd. In fact, if one takes the limit
of Eq. (16) as K → 0 [this must be done carefully using the properties in Eq. (11)], the following result
is obtained:

lim
K→0

σ2
φ
4=

(
σ2
φ

)
min

=
1
ρ

[
1 +

1
2Rd

]
→ (SL)max =

1
1 + (1/2Rd)

=
2Rd

1 + 2Rd
(18)

Interestingly enough, the result in Eq. (18), which is now independent of L, is also characteristic of
the performance of the I-Q Costas loop [4], which is obtained as a low SNR approximation to AL closed-
loop no. 3. It is important to understand that the optimum closed-loop performance of Eq. (18) is a
consequence of optimizing the weight (gain) K for each value of L. If instead of doing this, one were
to fix the gain K for all values of L (as suggested by the MAP estimation approach), the closed-loop
performance (as measured by σ2

φ with fixed-loop bandwidth) is suboptimum and indeed depends once
again on L. One final note is that the small SNR behavior of Eq. (18) is identical to that of Eq. (15),
the reason being that the value of K = 2Rd used in arriving at Eq. (15) approaches the optimum value
(K = 0) as Rd → 0.

As previously stated, the performance of AL closed-loop no. 2 is identical to that of AL closed-loop
no. 1, and thus no further discussion is necessary. The performance of AL closed-loop no. 3 (and also
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AL closed-loop no. 4) has been obtained previously [8]. In particular, the mean-squared phase error
performance of this loop is given by

σ2
φ =

1
ρ

 tanh2{2Rd −
√

2RdX}[
tanh{2Rd −

√
2RdX}

]2

 4=
1
ρSL

(19)

where X is a zero-mean, unit-variance Gaussian random variable, and the over bar denotes statistical
averaging over X. A plot of SL versus Rd is superimposed on the curves of Fig. 4. We first note that
the performance as given by Eq. (18) is independent of L. Furthermore, a comparison of the squaring
loss as determined from Eq. (18) with that calculated from Eq. (17) reveals that the performance of AL
closed-loop no. 3 is superior to that of AL closed-loop no. 1 with optimized gain for all values of Rd (see
Fig. 3 of [8]). As mentioned previously, if the hyperbolic tangent nonlinearity in Fig. 3(b) is approximated
by a linear device (i.e., tanhx ∼= x), then the two loops have the same performance.

What is particularly interesting for AL closed-loop no. 3 is that even though the performance in Eq. (19)
is computed assuming a weighting coefficient in front of the I&Ds in Fig. 3(b) equal to 2

√
2S/N0, the

behavior of this loop is not singular in the limit as Rd → ∞. Furthermore, it is natural to ask whether
the above weighting coefficient is indeed optimum in the sense of minimizing σ2

φ. To answer this question,
we proceed as we did for AL closed-loop no. 1, namely, we replace the weighting coefficient 2

√
2S/N0 by

an arbitrary constant, say K0, and proceed to optimize the performance with respect to the choice of this
gain.8 Making this replacement produces a mean-squared phase error, analogous to Eq. (19), given by

σ2
φ =

1
ρ

 tanh2{K[2Rd −
√

2RdX]}[
tanh{K[2Rd −

√
2RdX]}

]2

 4=
1
ρSL

(20)

where, as before, we have further normalized the weighting coefficient as K 4= K0N0/2
√

2S. Maximizing
the squaring loss factor SL (i.e., minimizing σ2

φ) in Eq. (20) results inK = 1(K0 = 2
√

2S/N0) for all values
of Rd. Thus, for AL closed-loop no. 3, the optimum gain from the standpoint of closed-loop performance is
precisely that dictated by the open-loop MAP estimation of θ, and the best performance is that described
by Eq. (19).

We conclude our discussion of AL closed loops by pointing out that, in view of the superiority of
Eq. (19) over Eq. (18), AL closed-loop no. 3 outperforms AL closed-loop no. 1 for all values of Rd.

IV. Closed Loops Motivated by the ML Approach

A. Structures

The ML approach to estimating the carrier phase, θ, is to maximize (rather than to average)
p(r(t)|di(t), θ) over all possible (2L) and equally likely data sequences. Analogous to AL open-loop estima-
tor no. 1, “ML open-loop estimator no. 1” is defined by (see Fig. 1: θ̂ML

4= max−1
θ qML(θ), unpartitioned

observation)

8 Again we note that this replacement does not affect the open-loop estimation of θ using Eq. (6).
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θ̂ML1 = max
θ

−1qî(θ)

qî(θ)
4= exp

(
max
{di(t)}

2
√

2S
N0

∫ LT

0

r(t)di(t) sin(ωct+ θ)dt

)
(21)

where î is the particular value of i corresponding to the data waveform dî(t) that achieves the maximiza-
tion. Alternately, by breaking up the integration over the entire observation into a sum of integrals on
each bit interval (the partitioned form of the observation) and recognizing that the data bits are iid binary
random variables, then Eq. (21) evaluates to (see Fig. 1: θ̂ML

4= max−1
θ qML(θ), partitioned observation)

θ̂ML2 = max
θ

−1
L−1∏
k=0

exp

(∣∣∣∣2
√

2S
N0

∫ (k+1)T

kT

r(t) sin (ωct+ θ)dt
∣∣∣∣
)

(22)

This estimator is analogous to Eq. (5) and is called “ML open-loop estimator no. 2.” Next, we obtain ML
open-loop estimates by maximizing the natural logarithm of qî(θ). Using the product form of qî(θ) as in
Eq. (22), one obtains (see Fig. 1: θ̂ML

4= max−1
θ ln qML(θ), partitioned observation)

θ̂ML3 = max
θ

−1
L−1∑
k=0

∣∣∣∣2
√

2S
N0

∫ (k+1)T

kT

r(t) sin (ωct+ θ)dt
∣∣∣∣ (23)

which is analogous to Eq. (6) and therefore called the “ML open-loop estimator no. 3.” Finally, we
consider a fourth ML open-loop estimator, which is based on maximizing the natural logarithm of qî(θ)
in its unpartitioned form of Eq. (15). This leads to “ML open-loop estimator no. 4,” which is defined by
(see Fig. 1: θ̂ML

4= max−1
θ ln qML(θ), unpartitioned observation)

θ̂ML4 = max
θ

−1 2
√

2S
N0

∫ LT

0

r(t)dî(t) sin (ωct+ θ)dt (24)

Block diagram implementations of ML open-loop estimator no. 1 [Eq. (21)] and ML open-loop estimator
no. 3 [Eq. (23)] are illustrated in Fig. 5 as representative of the four possibilities. In drawing these
implementations, we have again quantized the unknown phase into Q values and, thus, the maximization
over the continuous phase parameter θ in Eqs. (21) and (23) is approximated by maximization over a
Q-quantized version of this parameter.

As was true for the AL case, it is important to emphasize that the four ML open-loop phase estimates
as described by Eqs. (21) through (24) are identical. However, we shall again see that this same statement
is not true when considering the performances of the closed loops motivated by these four different ML
formulations.

Closed-loop phase synchronization structures based on the four ML open-loop estimators are obtained
as analogies of their AL counterparts, choosing as error signals, e, the derivatives with respect to θ of
the functions being maximized in Eqs. (21) through (24), respectively. Analogous to the terminology
used for the AL case, we shall refer to these four closed-loop structures as ML closed-loop nos. 1, 2, 3,
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Fig. 5.  Implementation of two ML open-loop phase estimators: (a) ML open-loop estimator no. 1—observation 
unpartitioned (quantized parallel implementation) and (b) ML open-loop estimator no. 3—observation partitioned 
(quantized parallel implementation).

2 2S ∫

2 2Sr(t)

(a)

(b)

{di (t)}

N0

LT

0
(  )dt exp (  )

sin (ωc t + θk) 

 

Σ
L-1

k =0

(  )

CHOOSE CHOOSE
max–1q (θl)

q (θ1)

q (θk)
θ̂

{qi (θ)}

r(t)

sin (ωc t + θk) 

N0

(k =1)T

kT

(  )dt
CHOOSE
max–1v (θl)

v (θ1)

v (θk)

v (θQ)

θ̂

q (θQ)

∫ max
{di (t )}

and 4. An implementation of ML closed-loop no. 1 is illustrated in Fig. 6(a). We also show here in
Fig. 6(b) an implementation of ML closed-loop no. 1 (or ML closed-loop no. 2) for the special case of
L = 1 since, as we shall see shortly, this particular of L yields the best performance. It is worthy of note
that ML closed-loop no. 3 is identical in form to the I-Q polarity-type Costas loop [5], as can be seen in
Fig. 6(c). (Note that the L-fold accumulator that precedes the loop filter can be omitted since it can be
absorbed into the loop filter itself by renormalizing its bandwidth.) We recall that, in the AL case, the
I-Q polarity-type Costas loop is obtained only as a high SNR approximation to closed-loop no. 3.

B. Performance

An analysis of the closed-loop performance of Fig. 6(a) results in an expression for the mean-squared
phase error given by (see the Appendix for the derivation)

σ2
φ =

1
ρ
eLK

2/2Rd

[
(1− p2+(0)) e2K + p2−(0)e−2K

]L{
[(1− p+(0)) eK − p−(0)e−K ] [(1− p+(0)) eK + p−(0)e−K ]L−1

}2

4=
1
ρSL

(25)

where

p±(φ) 4=
1
2

erfc
(√

Rd cosφ± K

2
√
Rd

)

p2±(φ) 4= p±(φ)|K→2K =
1
2

erfc
(√

Rd cosφ± K√
Rd

)
(26)
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Fig. 6.  Implementation of ML closed-loops: (a) ML closed-loop no. 1—observation unpartitioned, (b) ML closed-loop 
no. 2 (L = 1), and (c) ML closed-loop no. 3—observation partitioned.
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As we did for the analogous AL closed loop [see Fig. 3(a)], we have avoided the singular behavior of
the mean-squared phase error as Rd → ∞ by replacing the 2

√
2S/N0 coefficient in front of the I&Ds in

Fig. 6(a) by an arbitrary constant, say K0, that remains finite as N0 → 0 and further normalized the
weighting coefficient as K 4= (

√
S/2)K0T . As long as K0 (or equivalently K) is finite (which would be

the case in a practical implementation of the ML closed-loop scheme), the large SNR asymptotic behavior
of ML closed-loop no. 1 is

lim
Rd→∞

σ2
φ = lim

N0→0

N0BL
S

= 0 (27)

as one would expect. What is indeed interesting is that, unlike the AL case, the value of K that minimizes
Eq. (25), which from the standpoint of closed-loop performance as measured by mean-squared phase error
would be considered optimum, is not K → 0. In fact, for each value of Rd and L, there exists an optimum
value of K that unfortunately cannot be determined in closed form. Nevertheless, the optimum values
of K can be found numerically as a function of Rd by maximizing SL as determined from Eq. (25) for
each value of L. The results are illustrated in Fig. 7. The corresponding values of (SL)max are plotted
versus Rd in dB in Fig. 8 for the same values of L as those in Fig. 7. Results obtained from a com-
puter simulation of Fig. 6(b) agree with these analytically obtained numerical results for (SL)max within
0.1 dB at Rd = −6 dB.

From Fig. 8, we observe that the performance of ML closed-loop no. 1 becomes worse with increasing
L, i.e., L = 1 gives the best performance. Thus, the special case of the implementation in Fig. 6(a)
corresponding to L = 1, i.e., Fig. 6(b), is the configuration of most interest. Also in the limit as L→∞,
the optimum value of K approaches 0 independent of Rd. The corresponding value of SL is determined
by noting that for K → 0 we have p+(0) = p−(0) = p2+(0) = p2−(0) 4= p = 1/2 erfc

√
Rd. Then from

Eq. (25), we get

lim
K→0

σ2
φ =

(
σ2
φ

)
0

=
1
ρ
(1− 2p)−2 =

1
ρ

(
erfc2

√
Rd

)−1

→ (SL)0 = erfc2
√
Rd (28)

which also is independent of the observation length L. Since the optimum value of K is always greater than
0 (see Fig. 7), Eq. (28) also serves as a lower bound on the squaring-loss performance of ML closed-loop
no. 1. Other reasons for including this limiting squaring-loss behavior in Fig. 8 will become apparent
shortly when we consider the other ML closed-loop configurations.

As in the AL case, the performance of ML closed-loop no. 2 is identical to ML closed-loop no. 1 and
needs no further discussion. Moving on to ML closed-loop no. 3, we previously identified this as being
identical in form to the I-Q polarity-type Costas loop. Hence, its performance is independent of L and is
given by Eq. (28). Similarly, the performance of ML closed-loop no. 4 is also independent of L and given
by Eq. (28). Thus, we see that of the four ML closed loops, ML closed-loops nos. 1 and 2 are superior
to ML closed-loops nos. 3 and 4, which have performances that are identical and equal to those of the
former in the worst case (L→∞).

When the performance of the best ML closed-loop scheme (i.e., nos. 1 or 2) is compared with that of
the best AL closed-loop scheme (i.e., nos. 3 or 4), we find that the latter, e.g., the I-Q MAP estimation
loop, is superior to the former for all values of Rd. This comparison is illustrated in Fig. 9, where the
squaring-loss performance of the two schemes is plotted versus Rd.

C. Loop S-Curves

It is of interest to examine the S-curve behavior of ML closed-loop no. 1 and compare it with that of
ML closed-loop no. 3 and AL closed-loop no. 3. The equation describing the loop S-curve, η(φ), of ML
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Fig. 7.  Optimum weights (normalized) versus symbol SNR.
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closed-loop no. 1 is derived in the Appendix as Eq. (A-9) with the special case of L = 1 (already shown
to yield the best tracking performance) given by Eq. (A-10). Figure 10 illustrates plots of η(φ) versus φ
over one cycle of π rad for Rd = −5, 2, and 5 dB, respectively, where in each case, K has been chosen
equal to the optimum value as determined from Fig. 7. In the limit of small and large Rd, the S-curve
approaches the following functional forms:

η(φ) ∝
{

sin 2φ, small Rd
sinφ× sgn(cosφ), large Rd

(29)

These limiting forms are identical to the same limiting behavior of the S-curves corresponding to ML
closed-loop no. 3—the I-Q polarity-type Costas loop, and AL closed-loop no. 3—the I-Q MAP estimation
loop.

V. Conclusions

Motivated by the theory of MAP carrier phase estimation, we have developed a number of closed-loop
structures suitably derived from ML and AL functions. Several of these structures reduce to previously
known closed-loop carrier phase synchronizers while others appear to be new. One of the new structures
derived from ML considerations gives improved performance over the I-Q polarity-type Costas loop, which
is also derived from these very same considerations. Of all the loops considered, however, the I-Q MAP
estimation loop, which is derived from average log-likelihood considerations, is the best overall from a
performance standpoint. We leave the reader with the thought that the structures proposed in this article
are not exhaustive of the ways that closed-loop phase synchronizers can be derived from open-loop MAP
estimation theory. Rather, they are given here primarily to indicate the variety of different closed-loop
schemes that can be constructed simply from likelihood and log-likelihood functions.
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Appendix

Derivation of the Closed-Loop Tracking Performance
of ML Closed-Loop No. 1

Consider the closed loop in Fig. 5(a), whose error signal, e(t), at time t = LT is characterized by

e = exp

(
K0

∫ LT

0

r(t)dî(t) sin
(
ωct+ θ̂

)
dt

)
×K0

∫ LT

0

r(t)dî(t) cos
(
ωct+ θ̂

)
dt (A-1)

Substituting r(t) of Eq. (1) into Eq. (A-1) results in

e = exp

{
K0

√
S

2

(∫ LT

0

d(t)dî(t)dt

)
cosφ+K0

∫ LT

0

n(t)dî(t) sin
(
ωct+ θ̂

)
dt

}

×
[
K0

√
S

2

(∫ LT

0

d(t)dî(t)dt

)
sinφ+K0

∫ LT

0

n(t)dî(t) cos
(
ωct+ θ̂

)
dt

]
(A-2)

In view of the rectangular phase shape assumed in Eq. (2) for the transmitted data waveform, d(t),
Eq. (A-2) can be written in the discrete form

e = exp

{
K0

L−1∑
k=0

dîk

(√
S

2
dk cosφ+ nsk

)}
×

[
K0

L−1∑
k=0

dîk

(√
S

2
dk sinφ+ nck

)]
(A-3)

where

nsk
4=

∫ (k+1)T

kT

n(t) sin
(
ωct+ θ̂

)
dt; nck

4=
∫ (k+1)T

kT

n(t) cos
(
ωct+ θ̂

)
dt (A-4)

are zero mean iid Gaussian random variables with variance σ2
nck

= σ2
nsk

= N0T/4 and dîk
4=

sgn
(√

S/2 dk cosφ+ nsk

)
. Introducing the further normalization K = K0T

√
S/2 (note that when

K0 = 2
√

2S/N0, i.e., the gain suggested by the open-loop MAP estimation theory, then K = 2Rd) and
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normalizing nsk and nck to unit variance Gaussian random variables, Nsk and Nck, respectively, Eq. (A-4)
becomes

e = exp

{
K

L−1∑
k=0

dîk

(
dk cosφ+

1√
2Rd

Nsk

)}
×

[
K

L−1∑
k=0

dîk

(
dk sinφ+

1√
2Rd

Nck

)]
(A-5)

with dîk
4= sgn

(
dk cosφ+ (1/

√
2Rd)Nsk

)
.

Let η(φ) denote the signal component (mean) of the error sample e. Then, because of the independence
of the Nsk’s and Nck’s, we have

η(φ) = K sinφ

(
L−1∑
k=0

dîkdk exp
{
Kdîk

(
dk cosφ+

1√
2Rd

Nsk

)}Nsk
)

×
L−1∏
l=0
l6=k

exp
{
Kdîl

(
dl cosφ+

1√
2Rd

Nsl

)}Nsl

(A-6)

where the over bar denotes statistical averaging. It is straightforward to show that the statistical averages
required in Eq. (A-6) are independent of the data bits. That is,

dîkdk exp
{
Kdîk

(
dk cosφ+

1√
2Rd

Nsk

)}Nsk

is independent of whether dk = 1 or dk = −1 and

exp
{
Kdîl

(
dl cosφ+

1√
2Rd

Nsl

)}Nsl

is independent of whether dl = 1 or dl = −1. Performing these statistical averages gives the closed form
results

dîkdk exp
{
Kdîk

(
dk cosφ+

1√
2Rd

Nsk

)}Nsk

= eK
2/4Rd

[
(1− p+(φ)) eK cosφ − p−(φ)e−K cosφ

]
(A-7a)

exp
{
Kdîl

(
dl cosφ+

1√
2Rd

Nsl

)}Nsl

= eK
2/4Rd

[
(1− p+(φ)) eK cosφ + p−(φ)e−K cosφ

]
(A-7b)

where
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p±(φ) =

1
2
erfc

(√
Rd cosφ± K

2
√
Rd

)
(A-8)

Finally, since Eq. (A-7a) is independent of k and Eq. (A-7b) is independent of l, then substituting these
results into Eq. (A-6), we get

η(φ) = (K sinφ)LeLK
2/4Rd

[
(1− p+(φ)) eK cosφ − p−(φ)e−K cosφ

]
×

[
(1− p+(φ)) eK cosφ + p−(φ)e−K cosφ

]L−1
(A-9)

which represents the S-curve of the loop. For L = 1, Eq. (A-9) simplifies to

η(φ) = (K sinφ)eK
2/4Rd

[
(1− p+(φ)) eK cosφ − p−(φ)e−K cosφ

]
(A-10)

which, using the definition of p±, is periodic in φ with period π.

The slope of the S-curve at φ = 0 is needed for computing the closed-loop mean-squared phase error
performance. Differentiating Eq. (A-10) with respect to φ and evaluating the result at φ = 0 gives

Kη
4=
dη(φ)
dφ
|φ=0 = KLeLK

2/4Rd
[
(1− p+(0)) eK cosφ − p−(0)e−K cosφ

]

×
[
(1− p+(0)) eK cosφ + p−(0)e−K cosφ

]L−1
(A-11)

The noise component of e evaluated at φ = 0 is

N = exp

{
K

L−1∑
k=0

dîk

(
dk cosφ+

1√
2Rd

Nsk

)}
×

[
K

L−1∑
k=0

dîk
1√
2Rd

Nck

]
(A-12)

Which is zero mean and has variance

σ2
N = exp

{
2K

L−1∑
k=0

dîk

(
dk +

1√
2Rd

Nsk

)}
×

K2

(
L−1∑
k=0

dîk
1√
2Rd

Nck

)2
 (A-13)

Averaging first over the Nck’s, we get

σ2
N =

K2

2Rd

(
L−1∑
k=0

exp
{

2Kdîk

(
dk +

1√
2Rd

Nsk

)}Nsk
)
×
L−1∏
l=0
l6=k

exp
{

2K
(
dl +

1√
2Rd

Nsl

)}Nsl

(A-14)

Using Eq. (A-7) to evaluate the averages over the Nsk’s, we get
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σ2
N =

K2L

2Rd
eLK

2/Rd
[
(1− p2+(0)) e2K + p2−(0)e−2K

]L
(A-15)

where

p2±(φ) 4= p±(φ)|K→2K =
1
2

erfc
(√

Rd cosφ± K√
Rd

)
(A-16)

Since e(t) is a piecewise constant (over intervals of length LT ) random process with independent
increments, its statistical autocorrelation function is triangular and given by

Re(τ)
4= 〈E {e(t)e(t+ τ)}〉 =

{
σ2
N , |τ | ≤ LT
0, otherwise

}
(A-17)

Where 〈•〉 denotes time averaging, which is necessary because of the cyclostationarity of e(t). As is
customary in analyses of this type, we assume a narrow-band loop, i.e., a loop bandwidth BL ¿ 1/T .
Then, e(t) is approximated as a delta-correlated process with effective power spectral density:

N ′0
2
4=

∫ ∞
−∞

Re(τ)dτ = LTσ2
N (A-18)

Finally, the mean-squared phase error for the closed loop is

σ2
φ =

N ′0BL
K2
η

(A-19)

which, with substitution of Eqs. (A-11) and (A-18), results in Eq. (26) of the main text.
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